UHX Series

RTD Sensors

Pt100/500/1000 Elements, Temperature Sensor

Pt100/500/1000 elements to IEC751 Class A/B For use from -200°C to +650°C Thin film construction Suitable for surface & immersion applications where protected Vibration resistant

Specifications

Sensor type: Insulation resistance: Operation Temperature range: Resistance Tolerance (at 0°C):	Pt100/500/1000 (100/500/1000 Ohms @ 0°C) Exceed 100M ohm at 500V DC (@Room Temp.) -200°C to +650°C Class A / Class B = 0.06Ω/ 0.12Ω
Temperature coefficient:	TCR ppm/°C 3850
Insulation resistance : Self-heating: Thermal response time (90%): Measuring current 100 : Response time	> 100 M at 20°C; > 2 M at 500°C <0.4C/mW at 0°C (in Air, 1m/Sec) 10 Sec. Max. (in Air, 1m/Sec) 0.5 to 2.0 mA (self-heating has to be considered) water current (v = 0.4 m/s): t0.5 = 0.06 s t0.9 = 0.20 s air stream (v = 2 m/s): t0.5 = 3.0 s t0.9 = 13.0 s

Reliability test

- High temperature test
 Keep the Pt sensors in +650°C for 1000 hours.
- ♦ Low temperature test Keep the Pt sensors in −200°C for 1000 hours.
- Humidity test Keep the Pt sensors in 60°C and 90°C to 95% HR for 1000 hours.
- Thermal shock test Keep the Pt sensors in 0°C ice water for at least to 15sec ., then within 10sec. Directly put into 100°C hot water for least to 15sec, the above process should be proceeded for least 10 cycles.
 After each item test, valuation of item 1-1 should be within 0.12% and item 1-3 Should exceed 100M at 500V DC.

Characteristics

- 1-1 Electrical
- 1-1-1 Insulation Resistance
 - 1000M ohm or more

The Pt-SMD shall be cramped in the metallic block and tested, as shown below. Test Voltage: 100V DC for 1 minute at room temperature. The resistance of a platinum wire with temperature to measure the change in temperature.

The equation for such a change is:

$R_{\theta} = R_{o}(1 + a\theta + \beta\theta^{2})$

where < θ is the temperature change and α and β are constants, β being much smaller than α . We therefore ignore the term β^2 and assume that the resistance of the wire varies uniformly with temperature: α is the temperature coefficient of resistance of the material. For platinum a = 3.8x10-4 oC-1.

A simple form of the platinum resistance thermometer is shown in Figure 1. It consists of a platinum wire wound non-inductively on a mica former and held in a glass tube by silica spacers.

The resistance of the wire is measured with a Wheatstone bridge network and to allow for the change in resistance of the leads a set of dummy leads are included in the opposite arm of the bridge (see Figure 2).

This type of thermometer has a large range, from -200 oC to +1100 oC and this can be extended by the use of different wires. Bronze has a range starting at -260 oC and using carbon temperatures as low as -270 oC can be measured.

The advantages of the resistance thermometer are its convenient size, wide range and high sensitivity ($0.000\ 05\ oC$). It can only be used for steady readings, however, and is not direct-reading.

Relationship of temperature with Resistance

When t≧t0℃	When t $<$ 0°C
Rt= R0 (1+At Bt ²)	Rt= R0 [1+At Bt ² +C(t-100) t ³]
A = 3.9083E-3	B = 3.9083E-03
B = -5.7750E-7	B = -5.7750E-7
	C = -4.1830E-12 R ₀ = 1.000E+02

Ordering Information

Order Map	UHX	100	-	-	
	Series Code	Resistance	Res. Class	Leads Gauge AWG Number	Wire Lengths Exp : 400: 400 mm